首页 > 综合百科 > 可导与连续的关系(可导)

可导与连续的关系(可导)

来源:互联网转载 时间:2025-04-19 04:24:06 浏览量:

1、展开1全部 某点可导定义:设函数y = f (x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处取得增量 △x(x0+△x 仍在该邻域内)时,相应的因变量y 取得增量 △y = f (x0 + △x) - f (x0) ;若 △y 与 △x 之比当△x ->0 时的极限存在。

2、则称函数y = f (x) 在点x0 处可导,并称这个极限值为函数y = f (x) 在点x0 处的导数,记为y ‘(x0) 如果函数 y = f (x) 在开区间 I 内的每点处都可导。

3、则称函数 f (x) 在开区间 I 内可导。

© 转乾企业管理-攻考网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)